
Benchmarking for High Performance
Systems and Applications

Erich Strohmaier
NERSC/LBNL
Estrohmaier@lbl.gov

HPC Reference Benchmarks

? To evaluate performance we need a
frame of reference in the performance space

? This can be established by a set of benchmarks
?All we have right now is peak performance and

Linpack
?We need to better understand what are the critical

aspects of algorithms which determine their
performance

General Approach

?Develop a new characterization of codes focusing on
performance aspects

?Avoid using any specific hardware models or
concepts for this characterization

?Develop synthetic performance probes and
benchmarks testing these characteristics

?Relate benchmark performance with code
performance

? Focus on data-access (initially)

Benchmark Requirements

Benchmarks should be designed to be useful:
? For a significant period of time
?Architecture independent
?Across several generations of different HPC

architectures
?Useful for different application domains
?System and generation scalable code and problem

definition
?Have stable and well understood performance

characteristics

Scalable Definition

?A benchmark useful for the ‘TOP500 class’ of
systems for 10 years must bridge a range of 100,000
in system size!

?Benchmarks should utilize resources on a variety of
system sizes fully

?Runtimes stable for several generations of systems
? Eliminate the implications of algorithmic complexity of

real applications

Characterizing Performance

?Characterize performance behavior of applications
and algorithms independent from hardware!

?“Time to solution =
f(Algorithmic Complexity,

Data Access Characteristics,
Structure of Operations)”

Data Access Characteristics

What do we want to capture?
?Re-use of data by modern algorithm for improving

locality – Temporal locality
? hierarchical block-structured or recursive algorithms

? Indexed memory access - Regularity
? sparse, irregular, and/or adaptive codes
? not stride 1 (n)

? Limitations of loop-length - Granularity
? Due to data-dependencies, communication, etc

Temporal Locality

?How can we quantitatively describe data re-use?
? Look at temporal distribution function
?The probability distribution of how long ago I last used

a data item
?At every access I have a f(t)% probability to hit a location

I have visited within the last t cycles.

? (similar to stack distribution, stack distance)

?Approximate it by a simple function
?For recursive algorithms the cumulative temporal

distribution function should be self-similar and scale-
invariant

?Power Function Distribution

Power Distribution

?Characterized by one number
? Slope related to the ‘Re-use’ factor

?Concept does not use hardware concepts such as ‘cache’
?Distribution function is problem size and scale invariant

Cumulative temporal Distribution

0.1000

1.0000

1 10 100 1000 10000

n

P
ro

b
ab

ili
ty

Regularity

?A mapping of the data structure to the address space
which permits stride 1 (n) access exposes regularity.

?Re-mapping during execution might be necessary for
many algorithms to expose regularity.
?This form of ‘dynamic’ regularity has associated re-

mapping costs (gather-scatter operations).
?This type of (“irregular”) data access becomes more

and more important and is usually not avoidable.
? If present in a code it is likely to become the

performance bottleneck.
? “Our focus”

Granularity

Limitation of loop-length due to data-dependencies.
? The amount of pre-computable addresses (vector-

length)
? Access can be irregular (‘indirect’) or
? Regular (‘strided’)

?We focus on indirect as it becomes more important
and represent more of a lower-bound for achievable
performance.

?Granularity becomes very important for parallel
version with explicit communication
? It (severely) limits message sizes

Synthetic Benchmark Probe

?Steady-state throughput measurements.
?Warm caches etc.

?Non-uniform random memory access .
?Power-function as temporal distribution function .

?Granularity
?Vector length for pre-computed addresses and
?Organization of communication.

?Use indexed (“irregular”) data access to measure a
lower bound for performance.

?We have only 2 parameters so far (Good!).

Status and Future

? Implementing several test-codes.
?Which kernel – DAXPY?
?How many different index vectors?
?Impacts also data structures and regularity.

?Extending the concept to parallel systems.
?Details of the random process – homogeneous or

inhomogeneous memory-access?
?Data-mapping – organized or pseudo-random?

?Determine the re-use factors and granularities for
actual codes (paper and pencil).

?Need to test the correlation between benchmark
probe performance and code performance for the
same re-use factors and granularities.

The Performance Evaluation
Research Center (PERC)

David H Bailey
NERSC, Lawrence Berkeley National Laboratory

dhbailey@lbl.gov

PERC Overview

?An “Integrated Software Infrastructure Center” (ISIC)
sponsored under DoE’s SciDAC program.

?Approximately $2.4 million per year for 4 years.
? Four DoE laboratories.
? Four universities.
?Mission:
? Develop a science of performance, and engineer tools

for performance analysis and optimization.
? Focus on large, grand-challenge calculations, such as

in SciDAC application projects.

PERC Participants

Laboratories:
• LBNL (Bailey, Strohmaier)
• LLNL (Quinlan, de Supinski, Vetter)
• ORNL (Worley, Dunigan)
• ANL (Hovland, Norris)
Universities:
• Univ of Tennessee (Dongarra)
• Univ of Illinois (Reed)
• Univ of Maryland (Hollingsworth)
• UCSD Supercomputer Center (Snavely)

Thesis

For the foreseeable future, time to solution will be
dominated by a code’s ability to effectively utilize the
memory hierarchy, including local and distributed
memory.

Questions

?How can we best measure the memory hierarchy
behavior of a particular code on a particular system?
? Better benchmarks.

?Can we construct accurate models of performance,
based on data that is easily obtained?
? Performance monitoring tools.

?Can we accurately project the performance of a
future version of a code on a future system?
? Performance modeling and analysis.

? If we determine that a given code is running sub-
optimally, can we facilitate the necessary changes to
improve performance?
? Software tools to automatically or semi-automatically

optimize user codes.

Benchmarks

Discipline-specific benchmarks:
? Polished, concise versions of real user codes.
? Represent strategic application areas.
? Serve as test-bed for tools and methods.

Kernel benchmarks:
? Extracted from real codes.
? Reduce complexity of analyzing full-size benchmarks.

Low-level benchmarks:
? Measure key rates of data access at various levels of

memory hierarchy.
? Measure issue rates of functional units, network

bandwidth and latencies, costs of TLB misses, OS
context switches, I/O rates, etc.

? e.g MAPS (Allan Snavely, SDSC)

Performance Tools

? SvPablo: A graphical environment for instrumenting application
source code and browsing performance data.

? Sigma++: Uses runtime information to extract a detailed
representation of an application’s memory reference pattern.

? PAPI: A unified cross-platform tool to collect hardware
performance monitor data.

? Dyninst: Provides a machine independent interface to permit
the creation of tools and applications that use runtime code
patching.

? Repository in a box: A toolkit to facilitate the construction and
management of performance data collections.

Work is being done by Dan Reed (U Illinois), Jeff Hollingsworth (U
Maryland), Jack Dongarra (U Tennessee) and others.

Modeling Techniques

?Analytic Phase Modeling (Worley)
? Performance models for phases of the execution

based on straightforward counts of operations from
source code.

?Application Signatures (De Supinski, Vetter, Snavely)
? Characterize fundamental aspects of an application,

independent of the machine where it executes.

?Machine Signature (Snavely)
? Characterize fundamental aspects of a machine,

independent of the applications executing on it.
? Performance-predictive convolutions:

Combines application and machine signatures.

?And others

Modeling Techniques

?Performance algebra (Snavely and Reed):
? Constructs parameters for various analytic models.

?Black-box performance modeling (Strohmaier):
? Combines generic algebraic functions with results

from basic performance measurements.
?Back-fitting and statistical methods (Strohmaier,

Vetter):
? Uses sophisticated statistical methods based on

empirical data.
?Performance bound modeling (Hovland).

Each of these schemes has potential advantages and
disadvantages – we need to try and compare them
on numerous specific problems.

Performance Optimizers

ROSE (Quinlan, Hovland):
? Extensible mechanism for compile-time optimization.

New Harmony (Hollingsworth):
? Automatically adapts performance based on runtime

observations of machine, operating environment and
dataset.

ATLAS and AEOS (Dongarra):
? Self-tuning linear algebra software.
? Extension of ATLAS concept to more general applications.

Performance portability programming (Worley):
? Techniques for near-optimal performance across systems.

Performance assertions (Vetter):
? User-specified run-time tests that possibly change the

course of the computation depending on results.

Summary

?Achieving optimal performance on HPC systems has
compelling economic and scientific rationales.

?Performance is poorly understood – in depth-studies
do not exist except in a handful of cases.

?PERC will pursue “performance science” and
“performance engineering”, including improved
benchmarks, monitoring tools, modeling techniques,
and optimizers.

Evaluation of Leading Parallel
Architectures for Scientific Computing

Leonid Oliker
Future Technologies Group

NERSC/LBNL
www.nersc.gov/~oliker

Overview

? Most real-life applications are complex, irregular, and
dynamic.

? Generally believed that unstructured methods will
constitute significant fraction of future high-end
computing.

? Evaluate existing and emerging architectural
platforms in the context of irregular and dynamic
applications.

? Examine the complex interactions between high-level
algorithms, programming paradigms, and
architectural platforms.

Ongoing Research:
Architectural Alternatives

?Observation: Current cache-based supercomputers perform at a
small fraction of peak for memory intensive problems (particularly
irregular ones).

?Performance directly related to how well memory system performs.
?But “gap” between processor performance and DRAM access times

continues to grow (60%/yr vs. 7%/yr).
?Tighter integration of processor and memory is necessary:
?VIRAM (PIM with on-chip DRAM using vector technology)
?Imagine (Stream Technology)

?Evaluate use of VIRAM and IMAGINE chips as a building block for
high performance machines.

?Examine memory-intensive benchmarks.

New Evaluation Project:
Modern Parallel Vector Sys.

?Vector Architectures: SX6, SV2, and ESS
?We plan to study key factors of modern parallel vector systems,

including runtime, scalability, programmability, portability, and memory
overhead while identifying potential bottlenecks

?Application Domains we plan to examine :
Climate (CCM3), Fusion (GTC), Material Science (Paratec),
Molecular Dynamics (NAMD), Astrophysics (Madcap),
Fluid Dynamics (Overflow)

?What fraction of scientific codes suitable for these architectures?
What is the best programming paradigm?
What are required algorithmic modifications?
What are scalability limiting factors?
What are migration issues in terms of performance portability?

